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Abstract. It is known that Harten's uniformly non-oscillatory scheme is a second-order accurate scheme for 
discretizing conservation laws. In this paper a multigrid technique and Runge-Kutta time stepping with frozen 
dissipation is applied to Harten's scheme in order to obtain the steady-state solution. It is shown that these 
techniques applied to Harten's scheme lead to a better convergence to the steady-state solution of a first-order 
conservation law than applied to Jameson's scheme. 

1. Introduction 

In Computational Fluid Dynamics (CFD) the development of second-order accurate numeri- 
cal schemes, which produce high-quality solutions, and the application of acceleration 
techniques are of significant interest. In general, the accuracy of a scheme which is first-order 
accurate in space, such as Roe's scheme [12], does not suffice for practical applications, 
particularly for the simulation of viscous flows. However, the extra accuracy obtained with 
higher-order schemes is at the expense of an increased calculation time per grid point. 

In reference [8], Jameson constructed a pseudo second-order scheme by adding artificial 
dissipation to a central flux difference. This makes his scheme second-order accurate in a 
smooth field, but only first-order accurate in the neighbourhood of shocks. In order to keep 
the amount of calculation time within reasonable limits, Jameson applied Runge-Kutta  time 
stepping with frozen dissipation. Further acceleration of convergence was achieved by a 
multigrid technique. Recently, Harten [6, 7] introduced a new concept in the construction of 
high-order accurate schemes, namely essentially non-oscillatory interpolation (ENO). One 
of these ENO schemes is the uniformly non-oscillatory (UNO) scheme described in [6], 
which is second-order accurate in the entire flow field. 

The present work will investigate the multigrid behaviour of the UNO scheme in 
comparison with Jameson's and Roe's scheme when a time-explicit Runge-Kutta scheme 
with frozen dissipation is applied. Important for a successful multigrid performance is the 
damping of all possible Fourier modes in the discrete solution. A Fourier analysis will be 
applied to investigate the optimal damping rate of all Fourier components of the error in the 
multigrid process. 

The presentation starts in the next section with a description of the dissipation models, i.e. 
Roe's, Jameson's and Harten's dissipation models. In the third section Runge-Kutta  time 
stepping with frozen dissipation is discussed. In the fourth section the multigrid procedure is 
explained. The chosen multigrid routine consists of full multigrid (FMG) and the full 
approximation scheme (FAS). In the fifth section the Fourier analysis is described. The 
paper concludes with a presentation of the numerical results presented for a four-stage 
Runge-Kutta  scheme. 
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2. The numerical  schemes 

Three-dimensional fluid flow can be modelled by a set of nonlinear conservation laws, e.g. 
conservation of mass, conservation of momentum and conservation of energy. The present 
investigation deals with a simplified model,  namely a one-dimensional scalar conservation 
law, which is defined on a finite space domain. Together  with an initial condition this is 
referred to as the initial boundary value problem or IBVP. 

The scalar conservation law can be cast in the general form 

u t+ f (U)x=O with ( x , t ) E ~ ,  (1) 

where x denotes the space coordinate and t the time. The domain f~ will be taken to be 
[0, 1] × (0, ~). The flux function f may depend nonlinearly on u = u(x, t) and is assumed to 

1 2 be convex. In the case f (u)  = ~u ,  equation (1) represents the inviscid Burgers'  equation. 
Application of the chain rule to the spatial derivative in (1) results in the quasi-linear form 

U t + a(u)u x = 0 ,  (2) 

where the function a(u) denotes the characteristic wave speed, 

a(u) = d f  Uu(U). 
A characteristic is a curve in the (x, t) plane, 

(3) 

x = a (u ) t+Xo ,  (4) 

along which the solution u(x, t) is constant and therefore satisfies 

dx 
dt a(u) (5) 

Due to the finiteness of the domain, initial and boundary conditions are needed.  The initial 
condition of the IBVP can be stated as 

u(x, 0) = 6 ( x ) ,  (6) 

where &(x) is a given function on the interval x ~ [0, 1]. 
A t ime-dependent  boundary condition 

u(O, t )=bo( t  ) or u(1, t ) = b l ( t  ) ,  (7) 

is imposed dependent  upon when the characteristic (4) is directed into the domain 1~. The 
domain and the boundary conditions are shown in Fig. 1. 

Numerical solution of the IBVP requires the discretization of the conservation law (1). 
Introduce the grid function uj = u(xj) on the equidistant grid xj = ]h, where j = 0 , . . . ,  m, 
and the mesh size is h = 1/rn. A cell is defined for the grid point j = 1 . . . .  , m - 1 as the 

interval [xj_~, x j+J ,  i.e. the line segment between the midpoints of two adjacent grid nodes. 
A part of the equidistant grid is shown in Fig. 2. 
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Fig. 2. The equidistant  grid with mesh  size h. The  area between the brackets corresponds to a cell, 

Taking a central difference for the spatial derivative, equation (1) has the semi-discrete 
relation 

dUJdt +fj+½- fj-~ j = l , . . . , m - 1 ,  (8) 

where fj~½ represents the discrete flux at the cell faces x = xj_.½. The advantage of this 
formulation is that the discrete system remains conservative. The calculation of the discrete 
fluxes will be discussed in detail later on in this section. 

The system of ordinary differential equations (8) can be solved by applying an explicit 
time-integration routine. In order to keep the integration stable a Courant-Friedrichs-Lewy 
(CFL) condition [2] has to be satisfied, 

O r ~ O'max, (9) 

where o- is the CFL-number and O'ma x is the maximum CFL number, which depends on the 
choice of the time-integration routine and the space discretization. The time step can then be 
calculated from 

ho t  
~ t  = ( l o )  

max(j~o . . . . . .  -1)laj+~l ' 
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where aj+½ is an approximation of the characteristic wave-speed (3) at cell faces. For the 
sake of convenience the ratio of the time step and the mesh size is denoted by 

At 
a = -h-" (11) 

A boundary can be an inlet or an outlet, depending on the sign of the characteristic wave 
speed. For an inflow boundary (a~ > 0 or am_ ½ < 0) the time-dependent condition (7) holds, 
yielding 

n 

u] = g ( t n ) ,  (12) 

where j = 0 or ] = m. For an outflow boundary the solution can be extrapolated linearly, see 
for instance [8]. 

In the remainder of this section the three dissipation models investigated here, will be 
discussed. One of these methods (Roe's) is first-order accurate in space, whereas the other 
two are second-order accurate in space. The solution methods can all be put in the 
semi-discrete form (8). In each case the discrete flux appearing in that equation can be split 
into two parts, namely a convective flux and a dissipative (or diffusive) flux 

f j + ~ = C j + ~ - D j + ~ ,  j = O  . . . .  , m - l ,  (13) 

where the convective and dissipative parts can be expressed as 

1 
C]+~=~ ( f ( u j ) + f ( u j + , ) ) ,  j = 0 , . . . , m - 1 ,  (14) 

and 

Di+~ =D~+½(Uo, . . . ,  Um) , j = 0 . . . .  , m -  1 ,  (15) 

respectively. The solution methods differ in the calculation of the dissipative flux Dj+½. 
Relation (8) is said to be consistent (see [3]) with the conservation law (1) if the dissipative 
flux satisfies 

1 
Dj+x(u o . . . .  , u~) = ~ la~+~l(uj+, - uj)  + O ( h 2 ) ,  Di+½(c . . . .  , c) = O, 

for any constant c. 

R o e ' s  dissipation m o d e l  

Roe's scheme is a first-order upwind scheme. This means in fact that the central flux 
difference in (8) is calculated by using the first-order accurate forward or backward 
difference, depending on the sign of the characteristic wave speed. The method is described 
in [12]. The dissipative flux equals 

1 
Dj+~ = ~ ~b(a]+½)Aj+~u, (16) 
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where A]+½u = u j +  1 - 1x] and qJ(a) = lal is the dissipation coefficient. Due to the fact that the 
amount  of numerical dissipation may become too low near a sonic point, where a(u) equals 

zero,  a correction of ~0 is needed which prevents entropy-violation [15]. This is 

la!  if JaJ > 3 ,  

~0(a)={(  a +62)/(26) i f l a ]~<~ .  
(17) 

Here  6 is a small parameter  given by 6 = max{0, a j+~-  aj, a]+ 1 -a]+~} for a = aj+~. The 
characteristic wave speed aj+½ is defined for j = 0 . . . . .  m - 1 by 

{ A]+~f/A~+~u if A]+lU # 0 ,  

aj+~ = at =_ a(u]) if A]+~u = 0 ,  (18) 

where a(uj) is calculated with equation (3). 

Jameson's dissipation model  

The second method considered here is Jameson's  scheme [8], which is a pseudo second-order 
accurate scheme. The idea of Jameson's  scheme is to use a fourth-order  difference term in 
the calculation of the central flux difference in (8). This provides a base level of dissipation 
throughout  the domain,  sufficient to prevent  o d d -ev en  decoupling, but not sufficient to 
prevent  oscillations in the neighbourhood of shock waves in the numerical solution. In order  
to capture a shock wave, an additional second-order difference term is added locally by a 
sensor designed to detect discontinuities. In the calculation of the discrete flux (13) the 
second- and four th-order  dissipation become first- and third-order differences, so that the 
dissipative flux can be written as 

j2+) (4) --3 Dj+~ = e l[aj+~lA]+½u - 6,~,T2 a,+l, : a,+lU~ : , (19) 

3 with Aj+~u = btj+ 2 - 3u]+ a + 3uj - uj_ 1. In order  to prevent  entropy violation near a sonic 
point the absolute value of the characteristic wave speed is calculated by 

1 
[ a j+½[=~[ l a (u i ) [+ [a (u ]+ l ) [ ] ,  j = 0  . . . . .  m - 1 .  (20) 

The coefficients 6 (2) and 6 (4) a r e  functions of the value of a shock-sensor Pi+~ given by 

~]+~ = 2max{v]+2, lYj+I' /"j' / " j - l }  ' j = 0 , . . .  , m - - l ,  (21) 

where 

lui+a - 2uj + Uj_ll 
= lu j+ l l  + 2 luj l  + lu ]_ , l  ' / = 1 , . . . ,  m - 1. (22) 

Thus the shock sensor i s  O(h 2) in a smooth field and O(1) near a shock. Jameson writes the 
adaptive coefficients as 

e(:) = m i n (  1 (:)~+~) 6(4)1 =max(0,  K (4) j+~ , K , j+~ - a~,j+~), (23) 
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with K ~2)= 1, K (4)= 1/32 and o~ =2 .  Comparison of (16) and (19) shows that Jameson's 
scheme is generally less dissipative than Roe's scheme on a sufficiently fine grid. 

The difference formula A)+½ is undefined at the boundaries. It is replaced by 

3 
A~_ = U 2 -- 2U 1 + U 0 , A m _  ~ = --Urn -1- 2 U m _  1 --  U m _  2 , 

and the shock sensor (21) is set equal to zero, 

/"-1---~ /20 = b'm ~- / "m+l  ~---O. 

Harten's dissipation model 

Recently, Harten introduced the concept of ENO interpolation in order to create high-order 
accurate schemes. The second-order accurate ENO scheme described in [6], which Harten 
calls the UNO scheme, will be discussed below. The ENO schemes share many desirable 
properties with the total variation diminishing (TVD) schemes. The major difference 
between corresponding ENO schemes and TVD schemes is that the TVD schemes are one 
order less accurate at extrema of the numerical solution (see [6]). 

The dissipative flux of the UNO scheme contains an extra term in comparison with Roe's 
dissipative flux (16). This makes the scheme less dissipative. It is 

[ 
= D Roe  D]+~ 1+~ - 

L 

1 a~+½(1 - Aaj_½) 

[lV -4  =a-S-O] 
1 aj+½(1 + Aa/+~) SJ+I 

if a]+ ½ >/0 ,  

if aj+~ < 0 ,  
(245 

where aj+½ is given by equation (18). The dissipative flux in the UNO scheme depends on the 
time step, as can be seen from the parameter A which is defined by (11). The reason for the 
presence of this parameter can be explained as follows. 

Let as+~>0 and assume that the characteristic wave speeds are distributed linearly 
between x = x]_~ and x = xj+~ at time t =  t, (see also Fig. 3). The characteristic passing 
through the point (x ,  t) = (xj+½, t ,+l)  can now be determined by applying a linear 
interpolation of the characteristic wave speeds. The case a]+ 21 ~< 0 is similar. The correspond- 
ing characteristic wave speed is second-order accurate in space and is equal to the ratio 
appearing in (24). 

Apart  from the ratio of the characteristic wave speeds, the UNO dissipation contains the 
term Sj, which constitutes an approximation of h times the derivative Ou/Ox. In order to 

i / j 

tn+1 

t~ 

z,_½ z,+½ 
Fig. 3. Linear interpolation of the characteristics in cell [xj_½, xj+½] in case ai+~l>O in order to obtain the 

characteristic crossing the point (x]+½, t,+l). 
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retain second-order accuracy in the case of discontinuities in the solution, this approximation 

is determined in the following way. 
The second difference of the solution at the grid nodes x = xj is defined as 

A~u = . (25) ui+ 1 - 2uj + /'~j- 1 

At  boundaries this quantity is set equal to zero, 

A~u = 0 ,  A~u = 0 .  (26) 

In order  to obtain a second difference in midpoints, the minmod limiter is applied, 

A~+~u = minmod(A~u, z Aj+lu) , (27) 

where the limiter is defined as minmod(a,  b) = median(a,  0, b). As a consequence,  A~+½u 
becomes zero at an inflection point. The  approximation Sj of h times the derivative O u / a x  

can now be obtained from 

+ 1 2 1 2 
S] = Aj+½/,t -- "~ Aj+~U , S f  : Aj_~U n t- -~ Aj_½U , 

Sj = minmod(ST,  S T ) ,  
(28) 

+ 
where Sj and S / a r e  approximations of h times the derivative O u / O x  in x = Xj+l and x = xj_½ 
respectively. This leads to the six possibilities for Sj shown in Table 1. 

Table 1. The approximation Sj of h times 
the first derivative Ou/Ox 

Sj 

0 
(uj+, - uj_l)/2 
U j +  1 - -  U j  

I~] - -  U j  _ 1 

~uj - 2uj_~ + ½ui_ 2 
- 3uj + 2uj .  1 - ½uj+ z 

The scheme described here is second-order accurate in the entire flow field. The accuracy 
can even be increased by including higher-order differences in the dissipator. 

3. Runge-Kutta time stepping with frozen dissipation 

In order  to compute an approximate steady-state solution of equation (8) with fixed 
boundary conditions, explicit Runge -Ku t t a  time stepping with frozen dissipation can be 
applied to the system (8), when computations are carried out for a large number  of time 
steps. The  system (8) can more  generally be written as 

d u  
d-7 + N(n) = g ,  (29) 
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where u = [u 0 . . . . .  Urn] r and g is a possible right-hand-side vector, which equals zero for 
(8). 

Using the discrete flux (13), the operator  N can be put in the form 

N(u) = C(u) - n ( u ) ,  (30) 

where 

C j ( u ) = ( C j + ½ - C j  1)/h,  j = l  . . . . .  m - - l ,  (31) 

and 

Dj(u) = ( D j + ½  - -  Dj_ l ) /h ,  j = 1 . . . . .  m - 1. (32) 

In order  to explain the Runge -Ku t t a  procedure applied to (29), the defect vector d is 
introduced as 

d = N(u) - g .  (33) 

The advancement  of one time step At with a time-explicit k-stage Runge -Ku t t a  scheme can 
now be written as 

U (°) = U ( t ) ,  

u (~) = u (°) - a~ A t  d (°) , 

u(2)  = u ( ° )  - a2 At d (1) , 

" ' "  (34) 
U ( k - l )  - -  U ( 0 )  - -  O ~k _  1 At d (k-e) , 

u (k) = u (o) _ ce k A td  (k-l) , 

u ( t  + A t )  = u (~) , 

where og i are constants and a t = 1 for consistency. The coefficients a i and the number  of 
R u n g e - K u t t a  stage k can easily be changed, which makes the Runge -Ku t t a  routine a 
flexible time-step procedure.  

In order  to reduce the calculation time, Jameson freezes the dissipative fluxes (32) present 
in the operator  N in the Runge -Ku t t a  stages 2 . . . .  , k. As a consequence the defect vectors 
become 

d(° )  = C ( u ( ° ) )  - D ( u ( ° ) )  - g '  ( 3 5 )  

d (k) = C(u (k)) - / 3 D ( u  O)) - (1 - / 3 ) D ( u  (°)) - g ,  k I> 1,  

where fl is a constant satisfying 0 ~</3 ~< 1. 

4 .  M u l t i g r i d  

One of the pioneers of the multigrid technique is Brandt [1], who originally applied the 
concept to elliptic partial differential equations. A general review of the multigrid technique 
is presented in the work of Stuben and Trot tenberg [14]. 

The multigrid technique for numerically solving hyperbolic partial differential equations is 
less well developed. Spekreijse [13] solved the Euler  equations for inviscid flow using a 
multigrid procedure.  Koren [9] extended the work of Spekreijse to the Navier-Stokes  
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equations. Both Spekreijse and Koren used Newton iteration as a relaxation technique for a 
multigrid procedure. The disadvantage of Newton iteration is that it requires the convective 
and the dissipative fluxes to be continuously differentiable. Dick [4] numerically solved the 
steady Euler equations using symmetric Gauss-Seidel as a relaxation technique for a 
multigrid procedure. A requirement for this technique was that the system had to be 
positive. Both requirements are not necessary for Runge-Kutta time stepping. 

Lallemand and Koren [10] showed for the van Leer scheme that Runge-Kutta time 
stepping is an effective relaxation procedure for a multigrid technique. The application of the 
Runge-Kutta technique (34) in a single-grid calculation with a small mesh size h requires an 
intolerably high number of iterations. This is due to the fact that the Runge-Kutta time 
stepping is not able to fastly damp the low Fourier modes present in the solution. In a 
multigrid technique these modes are damped by using coarser grids. 

The multigrid technique in the present work can only be applied to steady-state calcula- 
tions. Consider the following more general equation in order to explain the multigrid routine 
used here: 

N(u) = g ( u ) ,  (36) 

where N represents the nonlinear operator 

OU 
N(u) -= a(u) dx ' (37) 

and a and g are known functions. The discretization N h of the nonlinear operator N on an 
equidistant grid with mesh size h results in a system of discrete equations 

Nh(u h) =gh, (38) 

where the boundary conditions are included. The addition of a time derivative to system (38) 
results in equation (29), which can be solved with the Runge-Kutta time stepping technique 
(34). The steady-state solution of (29) also satisfies (38). 

Application of a number of Runge-Kutta time steps to a specified initial condition results 
in an approximation ~h. The algebraic error is defined as the difference between the 
steady-state solution u h and the approximation fih to this solution, 

h h ~ h  v = u - u (39) 

An appropriate measure for the convergence forms the Ll-norm of the defect vector (33) 
evaluated at the approximated solution fib, 

d h =Nh(fih) _gh (40) 

This defect vector is zero when the steady-state solution U h is substituted in (40). 
The basic feature in the multigrid technique is the V-cycle. The following text will explain 

every step of the V-cycle by assuming only two grid levels. The extension to more than two 
grid levels is straightforward. The V-cycle starts at the fine grid with mesh size h, where/x 1 
time steps or pre-relaxations are performed. The obtained solution will then be used to start 
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the time stepping at the coarse grid with mesh size H = 2h. In order to use the Runge-Kut ta  
technique at the coarse grid, a so-called coarse-grid equation of the form (38) is needed. This 
equation can be derived as follows. Substitute the right-hand-side vector of (38) in the defect 
vector (40). This yields 

d h =Nh(fi  h ) - N h ( f i  h + vh) ,  (41) 

where (39) is used. The coarse-grid equations form an approximation of (41) at a grid with 
mesh size H = 2h, 

d "  = Nn(fi n) -- NH(fi H + ¢¢H). (42) 

This can be reformulated as 

N n ( ~ . )  = g n ,  (43) 

where 

-/4 ~n 0n g~ d H w = u  + and = N~(fi n ) -  . (44) 

Equation (43) has to be solved for ~¢h. In order to start the Runge-Kut ta  time stepping at 
the coarse grid, the solution vector fin and the defect vector d n are needed. These vectors 
can be found by applying a restriction operator I~', 

~11H H ~  h dH H h 
= I h U , = I h d . ( 4 5 )  

For the restriction operator 1~ / full weighting is taken with injection at the boundaries, i.e. 

i~ 1 h 1 h 1 h 
u j = -~ u2j_~ + ~ u2j + -~ u2j+~ , 

H h H h 
IX 0 = U 0 ~ U m / 2  = H m • 

j = l  . . . .  , m / 2 - 1 ,  
(46) 

Next, i% time steps are performed at the coarse grid where the right-hand-side vector g/4 is 
frozen. This results in an approximation for ~H. 

The next stage of the V-cycle consists of the prolongation of the correction 

o H  ~- ~ H  H ' h  
- I h u (47)  

to the fine grid. This correction denotes the difference between the final solution and the 
initial solution at the coarse grid. The transfer of the correction to the fine grid is done by 
means of the interpolation operator I~.  For the interpolation operator I h linear interpola- 
tion is used 

h h 1 H 

7 - 7 . . . .  U2j = /'/ ' U2j+I = 2 (U + / - / j + l )  j = O, . m/2  (48) 
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The new fine-grid solution is found by adding the interpolated correction to the already 
known fine-grid solution, 

fih ~ fih+ ihc~H. (49) 

With this fine-grid solution, /z 2 time steps or post-relaxations are performed. Again the 
right-hand-side vector of the fine-grid equation is kept frozen during the time stepping. 

The V-cycle can easily be extended to more than two grid levels (see Fig. 4). Starting from 
a fine grid, the coarsest grid can be reached by subsequently performing/~1 pre-relaxations 
followed by a restriction. At the coarsest grid, P-0 relaxations are taken. Next, the maximum 
grid level can be reached by subsequently performing a prolongation followed by /~2 
post-relaxations. 

The multigrid technique in the present work consists of two parts. In the first part full 
multigrid (FMG) is employed in order to obtain an accurate initial solution vector at the 
finest grid. In the second part the full approximation scheme (FAS) is used until the solution 
has converged. 

The FMG stage starts at the coarsest grid level 1 by performing P~0 relaxations with gn = 0. 
Next, the solution is transferred to grid level 2 with the interpolation operator Ihn. The 
right-hand-side vector at the finer grid is set t o  gh = 0. One V-cycle is applied resulting in a 
better solution at grid level 2. Next, the transfer operator I h gives an initial solution at grid 
level 3. This procedure is repeated until the maximum number of grid levels is reached. The 
structure of the FMG algorithm is called the F-cycle. The initial stages of the F-cycle are 
shown in Fig. 5. 

The FAS stage starts with an approximation of the solution at the finest grid level obtained 
by employing full multigrid. A previously set number of V-cycles can now be performed until 
the solution at the finest grid is converged to the steady-state solution. Characteristic for the 
FAS stage is that the high-frequency Fourier modes as well as the low-frequency Fourier 
modes are damped sufficiently. The high-frequency modes are damped by the relaxations at 
the finest grid, whereas the low-frequency modes are damped by the multigrid process. 

The computational cost of one V-cycle with /,1 pre-relaxations, /~2 post-relaxations, /-~0 
relaxations at the coarsest grid and l grid levels can be expressed in terms of the work WU 
needed to perform one time step at the finest grid. In case the work needed for employing 

Fig. 4. One V-cycle with 5 grid levels. 

Level 
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Level 

Fig. 5. The initial procedure of the full rnultigrid stage. 

the transfer operators is neglected this is 

WUV(1) = I (tz~ 
,1 ] 

"~- ~1'£2) E 21-i +/%21-1 x W U ,  
i = 1  

which is approximately 

WUV(1) = 2(/z~ +/-~z) (50) 

for large values of l. 
Similarly the computational cost of the initial F-cycle can be calculated. The amount of 

work for one F-cycle is 

l - 1  

WUF(l) =/~o 2~-' × WU + WUV(I) ~ 21-i , 
i = I  

which is approximately 

W U F ( l ) = 4 ( ~  + ~ 2 )  (51) 

for large values of l. 

5. Fourier analysis of  error reduction 

In this section a multi-level Fourier analysis will be applied to the linearized schemes in order 
to examine the performance of the combination of the multigrid technique and Runge-Kut ta  
time stepping with the three different dissipation models. For a given scheme (8) the analysis 
results in an upper bound for the amplification of the Fourier modes in a multigrid V-cycle. 
This linear result is expected to be an upper bound for the error reduction obtained in a 
numerical calculation with the nonlinear inviscid Burgers' equation. 

The linear form of a scheme (8) is obtained by considering the linear flux function 
f(u) = u. The consequence of this is that the characteristic wave speed is constant, i.e. 

a j + ~ = a = l ,  j = 0 , . . . , m - 1 .  
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The linearization leads to the following expressions for the convective fluxes (14): 

255 

1 cj+  = (uj + uj+,), (52) 

and for the dissipative fluxes (see (15)): 

DROe 1 

D J a m e s o n  j+~ = F(2)Aj+~u - F(4)A~+½u, 

D H a r t e n  r~ao~ 1 j+~ =,-,j+~ - ~ ( 1 -  o-)Sj, 

(53) 

where the nonlinear adaptive constants of Jameson's scheme are replaced by the constants 
g (2) and E (4). The boundary conditions are assumed to be periodic. 

Consider the Fourier  mode at time level n with amplitude fi0 h'" and wave-number 
0 E (0, 27r) on a grid with mesh size h = 1/m,  

n ^ h  n e i O x ]  . . 
u ~ = u  o' , j = O ,  . , m ,  (54) 

where i = ~ / - 1  and x~ = jh .  A grid with mesh size h containing m + 1 equidistant mesh points 
can only represent  m Fourier  modes,  namely the modes with wave-number O k = 2~'k for 
k = 1 . . . .  , m. Substitution of the Fourier  mode with wave-number 0 in equation (34), where 
equations (30)- (33)  and (52, 53) are used, yields the amplitude ~h,+l U o" after one R u n g e -  
Kut ta  time step. 

The influence of the transfer operators during a V-cycle on the amplitudes of the Fourier  
modes is obtained by applying discrete Fourier  transformations as in [5]. Define the discrete 
Fourier  transformation at a certain grid with mesh size h as 

h= h ~ .h ei0kxj . .  uj  Uok , j = O ,  . , m .  (55) 
k = l  

Similarly, at the next coarser grid the discrete Fourier transform is defined as 

m / 2  

u~ = H ~] t~ n e i°kyj j = 0, m / 2  (56) 
O k ~ • • . , , 

k = l  

where yj = j H .  The restriction operator  (46) and the interpolation operator  (48) couple the 
wave-numbers pairwise, 

~ h  = 0k 
uo k ~h , k = l . . . .  , m / 2  . 

O k + m ~ 2  

(57) 

The restriction opera tor  yields the following amplitude of the Fourier  mode  with wave- 
number  Ok, 

)]0 k 0 k = L 2 + ~ c o s ( 0 k h ) , ~ - - - ~ c ° s ( 0 k h  ff , k =  l . . . . .  m / 2 ,  (58) 
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and the interpolation operator gives 

t7 h = [ ½ +  l c ° s ( O k h ) l f t n  k = X ,  m / 2  
ok 1 _ ~ c o s ( 0 k h )  0k . . . .  , 

(59) 

^ h  Starting with the initial amplitudes Uok at the finest grid, one entire V-cycle can be performed 
,h by applying the amplification rates obtained from Runge-  resulting in the amplitudes Vok 

Kutta time stepping, the restriction (58) and the interpolation (59). An upper bound for the 
amplification factor of the amplitudes in one V-cycle can now be found by taking 

ok 
A(/zo,/[~1, ~[-£2, O ' )  = max(k= 1 . . . . . .  ) ~ . (60) 

By varying the number of relaxations /%, /z l , / z  2 and the CFL-number,  the amplification 
factor can be optimized. 

In the linear case the amplification (60) will be accurate in case the initial solution contains 
the Fourier mode which results in the maximum value. The amplification rate (60) is also 
expected to be an upper bound for the error reduction in the nonlinear case. However, in 
the nonlinear case higher amplification rates may be found due to the fact that the Fourier 
modes are mapped onto other modes during a relaxation on a single grid. 

6.  N u m e r i c a l  re su l t s  

This section contains the numerical results obtained by applying multigrid and a four-stage 
Runge-Kut ta  scheme (34) with frozen dissipation. The numerical results for each dissipation 
model will be discussed separately. 

The numerical calculation in this section is performed with the inviscid Burgers' equation. 
The discrete initial condition used in the calculation is 

qb(xj) : cos(Trxj), j = 0 , . . . ,  m ,  (61) 

where xj = jh and the boundary conditions are 

n n ( 6 2 )  
U 0 = 1 , U m = - -  1 , 

so that no outflow conditions are necessary in this calculation. At  time t = 1/7r a shock 
develops in the solution, which is located at x = 1/2 for large time. The steady-state solution 
is 

f 1 ,  0~<xj<  1 ,  

= ~ 0 x j =  ½, w i t h x j = j h ,  j = O . . . . .  m . (63) Uj 
'1 L _ , ½ < x j ~ < l ,  

In order to reach the steady-state solution, multigrid is applied with a four-stage (k = 4) 
Runge-Kut ta  scheme with coefficients 
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1 1 1 
oq 4 ~2 = ~ , ol 3 = ~ , 13 = 1 

The dissipative flux is evaluated twice in each Runge-Kut t a  time step [8]. In the multigrid 
routine the coarsest grid contains 6 grid points. In the numerical calculation as well as in the 
Fourier  analysis 7 grid levels have been used, which results in 321 grid points at the finest 

grid. 
For this simple model problem the three dissipation models give the same steady-state 

solution. Hence,  in this section only the convergence rate will be studied. For  each 
dissipation model and in both the Fourier analysis and the numerical calculation the 
amplification factor per V-cycle will be optimized with respect to the CFL-number  for a given 
choice of the number  of relaxations at the coarsest gr id , /%,  the number  of pre-relaxations, 
/-~1, and the number  of post-relaxations,/~2- Afterwards,  the optimal choice for the numbers 
of relaxations is determined,  resulting in the optimal amplification rate A op t. 

In the Fourier  analysis the upper  bound for the amplification factor per V-cycle (60) is 
determined by choosing the initial amplitude vector as 

.h,O = [ 1 ,  k = l  . . . .  , m / 2 ,  
(64) 

u°k , k = m / 2  + l . . . .  , m , 

so that the initial solution possesses only low-frequency Fourier  components ,  which corre- 
sponds to the solution after the FMG stage. 

In the numerical calculation the amplification factor per V-cycle is determined as follows. 
After  the F MG stage and after the FAS stage the La-norm of the defect vector of the fine 
grid solution is calculated. The amplification factor in the FAS stage follows by taking the 
ratio of both Ll-norms.  

In the discussion on the results of the numerical calculation, convergence plots will be 
used. A convergence plot shows the L l -norm of the defect vector at the finest grid as a 
function of the number  of work-units. The  first point in the convergence plot is not of 
particular interest, because it is obtained by taking the Ll -norm of the defect vector of the 
initial solution at the coarsest grid. The second point is measured at the starting point of the 
FAS stage. The subsequent points are measured after each V-cycle in the FAS stage. 

In the following the results for the dissipation models of Roe,  Jameson and Har ten  will be 
discussed. 

R o e ' s  d iss ipat ion  m o d e l  

Table 2 shows the amplification rates per V-cycle and per work-unit obtained from the 
Fourier  analysis for varying numbers of relaxations. The minimum and maximum allowable 
CFL-numbers  are 0.0 and 2.0. The optimal value for the amplification factor per work-unit 
Aop t = 0.659 is found for the parameters  

go = 1,  ~1 = 1,  g2 = 1,  ~ = 1.64. (65) 

In the numerical calculation the amplification rates shown in Table 3 are obtained. The 
opt imum value for the amplification per work-unit Aop t = 0.556 is found for the parameters  
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Table 2. The amplification factor A per V-cycle and per work-unit with respect to the CFL-number o- as function of 
the relaxations/z0, /zl,/*2, obtained by applying the Fourier analysis to Roe's dissipation model 

#o #1 #2 ~ A per V-cycle A per work-unit 

0 1 1 1.80 0.433 0.811 
1 1 1 1.64 0.189 0.659 
2 l 1 1.64 0.189 0.659 
1 0 1 1.80 0.594 0.771 
1 1 1 1.64 0.189 0.659 
1 2 1 1.70 0.133 0.714 
1 1 0 1.68 0.478 0.691 
1 1 1 1.64 0.189 0.659 
1 1 2 1.70 0.133 0.714 

Table 3. The amplification factor A per V-cycle and per work-unit with respect to the CFL-number cr as function of 
the relaxations/.to, /zl, /z2, obtained from the numerical calculation with Roe's dissipation model 

/Zo ~1 /*2 cr A per V-cycle A per work-unit 

0 1 1 1.60 0.096 0.557 
1 1 1 1.60 0.096 0.556 
2 1 1 1.60 0.096 0.557 
1 0 1 1.61 0.357 0.597 
1 1 1 1.60 0.096 0.556 
1 2 1 1.64 0.047 0.600 
1 1 0 1.61 0.299 0.547 
1 1 1 1.60 0.096 0.556 
1 1 2 1.65 0.051 0.610 

~o = 1 ,  ~ = 1 ,  ~2 = 1 ,  ~ = 1 . 6 0 .  (66)  

T h e  c o n v e r g e n c e  p l o t  o f  t h e  n u m e r i c a l  c a l c u l a t i o n  is s h o w n  in F ig .  6. T h e  f inal  s o l u t i o n  is 

r e a c h e d  in a p p r o x i m a t e l y  4.9 s e c o n d s  a t  a V A X  s t a t i o n  3100. T h e  d i f f e r e n c e  b e t w e e n  t h e  

n u m e r i c a l  a n d  a n a l y t i c a l  r e s u l t  is t h a t  t h e  o p t i m a l  a m p l i f i c a t i o n  r a t e  in t h e  n u m e r i c a l  

c a l c u l a t i o n  is s ign i f i can t ly  s m a l l e r  t h a n  t h e  u p p e r  b o u n d  f o u n d  in  t h e  F o u r i e r  ana lys i s .  T h e  

O< 
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Fig. 6. The Ll-norm of the defect vector at the finest grid as a function of the number of work-units for Roe's 
dissipation model with the parameters /z 0 = 1, /x 1 = 1, /z 2 = 1 and ~r = 1.60. 
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reason for  this is tha t  a be t te r  damping  is achieved due to the nonl inear  fo rm of  R o e ' s  

dissipation model .  
For  the rest the numer ica l  and analytical  results co r re spond  quite well. The  opt imal  

re laxat ion pa ramete r s  are equal ,  whereas  the opt imal  C F L - n u m b e r s  are approx imate ly  the 

same.  

Jameson's dissipation model 

The  dissipation in J a m e s o n ' s  mode l  is essentially nonl inear .  The  four th -o rde r  dissipation is 

present  in the s m o o t h  parts  of  the solution,  whereas  the second-orde r  dissipation is only  

locally present  near  shocks.  The re fo re ,  l inearizat ion of  the equat ions  is ques t ionable  for  this 
mode l  p rob lem,  where  a s t rong shock  is present .  Since the solut ion is smoo th  in the main  

par t  of  the domain ,  the opt imal  choice for  the coefficients ~(2) and ~-(4) in the l inearized 

equat ions  seems to be 

g(2) = 0 ,  {(4) = 1 (67) 
3 2 "  

The  Four ie r  analysis results in the amplification rates shown in Table  4. The  opt imal  
amplif icat ion fac tor  per  work-un i t  A o p  t - - -0 .625 is found  for  the pa ramete r s  

~0 = 2 ,  ~1 = 1 ,  ~2 = 0 ,  g = 2 .44 .  (68) 

The  min imum  and m a x i m u m  al lowable C F L - n u m b e r s  are approximate ly  1.5 and 2.7. The  

reason  for  the existence of  a lower  b o u n d  is tha t  in one  pre-re laxat ion J a m e s o n ' s  scheme is 

no t  able to d a m p  the Four ie r  c o m p o n e n t s  with a wave n u m b e r  near  ½ 7r at the fine grid 

sufficiently. The  consequence  of  this is that  the r ight-hand-s ide funct ion becomes  large at the 
next  coarser  grid and thus that  the ampli tudes  blow up when  taking relaxat ions at the coarse  

grid. 

In  the numer ica l  calculat ion with the inviscid Burgers '  equa t ion  the amplif icat ion rates  
shown in Table  5 are  obta ined.  T he  opt imal  value for the amplification per  work-uni t  

Aop t = 0.765 is f ound  for  

~0 = 2 ,  ~1 = 2 ,  ~z = 1 ,  g = 2 .03 .  (69) 

Table 4. The amplification factor A per V-cycle and per work-unit with respect to the CFL-number ~r as function of 
the relaxations /~0, /zl, /z2, obtained by applying the Fourier analysis to Jameson's dissipation model 

}[~0 ~1 ]'L2 O" A p e r  V-cycle A p e r  w o r k - u n i t  

0 1 0 2.71 0.930 0.964 
1 1 0 2.47 0.404 0.636 
2 1 0 2.44 0.391 0.625 
3 1 0 2.44 0.391 0.625 
4 1 0 2.44 0.391 0.625 
2 1 0 2.44 0.391 0.625 
2 2 0 2.35 0.168 0.640 
2 3 0 2.47 0.114 0.696 
2 1 0 2.44 0.391 0.625 
2 1 1 2.38 0.173 0.645 
2 1 2 2.47 0.115 0.697 
2 1 3 2.47 0.110 0.759 
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Table 5. The amplification factor A per V-cycle and per work-unit with respect to the CFL-number tr as function of 
the relaxations jz0, /zl, /z2, obtained from the numerical calculation with Jameson's dissipation model 

log 0 jl~ 1 iLL 2 O" A per V-cycle A per work-unit 

1 2 1 2.02 0.213 0.773 
2 2 t 2.03 0.201 0.765 
3 2 1 2.02 0.209 0.770 
2 1 1 2.13 0.512 0.846 
2 2 1 2.03 0.201 0.765 
2 3 1 2.03 0.170 0.801 
2 2 0 2.04 0.375 0.782 
2 2 1 2.03 0.201 0.765 
2 2 2 2.02 0.190 0.812 
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Fig. 7. The Ll-norm of the defect vector at the finest grid as a function of the number of work-units for Jameson's 
dissipation model with the parameters/z o = 2, /z 1 = 2, /% = 1 and ~ = 2.03. 

The  convergence  plot  of the numer ica l  ca lcula t ion is shown in Fig. 7. The  final so lu t ion  is 

reached  in approx imate ly  8.7 seconds  on  the same computer .  The  differences be tween  the 

results  of the Four i e r  analysis  and  the numer ica l  ca lcula t ion are significant.  Firstly,  one  

add i t iona l  pre-  and  pos t - re laxa t ion  is n e e d e d  in the op t imiza t ion  process of the numer ica l  

ca lcula t ion .  Secondly ,  the C F L - n u m b e r  in the calcula t ion is smal ler  due to a higher  a m o u n t  

of diss ipat ion.  Final ly ,  the op t imal  amplif icat ion rate in the numer ica l  ca lcula t ion  is larger  

t han  the uppe r  b o u n d  found  with the Four i e r  analysis.  These  differences are due to the fact 

tha t  J a m e s o n ' s  dissipative flux is highly non l inea r .  

Harten's  dissipation model  

A Four i e r  analysis  canno t  easily be appl ied  to H a r t e n ' s  diss ipat ion mode l ,  because  this 

mode l  is highly n o n l i n e a r  due  to the adapt ivi ty  of the difference stencils. In  the smooth  par t  

of the so lu t ion  the diss ipat ion mode l  ma in ly  uses (see Tab le  1) the second-orde r  centra l  

d i f ference,  the second-orde r  forward difference and  the second-order  backward  difference as 

a p p r o x i m a t i o n  for h t imes the der ivat ive  Ou/Ox. 
Choos ing  the second-o rde r  centra l  di f ference for Sj one  finds that the op t imal  amplif icat ion 
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f a c t o r  p e r  w o r k - u n i t  Aop  t - - 0 . 7 4 0  is a c h i e v e d  w i t h  t h e  p a r a m e t e r s  

/% = 1 ,  /x~ = 1 ,  /x z = 1 ,  or = 1 . 7 0 .  (70)  

T h e  m i n i m u m  a n d  m a x i m u m  a l l o w a b l e  C F L - n u m b e r s  a r e  in this  ca se  0 .0  a n d  1.8. 

H o w e v e r ,  t h e  c h o i c e  o f  t h e  s e c o n d - o r d e r  b a c k w a r d  d i f f e r e n c e  f o r  Sj r e s t r i c t s  t h e  s t ab i l i ty  

i n t e r v a l .  T h e  o p t i m a l  a m p l i f i c a t i o n  f a c t o r  p e r  w o r k - u n i t  Aop  t = 0 .754  is t h e n  f o u n d  fo r  t h e  

p a r a m e t e r s  

/% = 3 ,  /x 1 = 1 ,  Ix: = 1 ,  o- = 1 . 1 2 ,  (71)  

w h e r e  t h e  n u m b e r  o f  r e l a x a t i o n s  at t h e  c o a r s e s t  g r id  has  b e e n  i n c r e a s e d .  T h e  m i n i m u m  a n d  

m a x i m u m  a l l o w a b l e  C F L - n u m b e r s  a r e  in th is  ca se  0 .8  a n d  1.3. 

In  t h e  n u m e r i c a l  c a l c u l a t i o n  t h e  o p t i m a l  v a l u e  fo r  t h e  a m p l i f i c a t i o n  f a c t o r  p e r  w o r k - u n i t  

Aop  t = 0 .692  is f o u n d  f o r  t h e  p a r a m e t e r s  ( see  T a b l e  6)  

1% = 0 ,  /x 1 = 1 ,  /x 2 = 1 ,  or = 1 . 2 0 .  ( 7 2 )  

T h e  c o n v e r g e n c e  p l o t  o f  t h e  n u m e r i c a l  c a l c u l a t i o n  is s h o w n  in Fig .  8. T h e  f inal  s o l u t i o n  is 

Table 6. The amplification factor A per V-cycle and per work-unit with respect to the CFL-number ~ as function of 
the relaxations ~0, P-l, /~2, obtained from the numerical calculation with Harten's dissipation model 

/x 0 /x 1 /x 2 cr A per V-cycle A per work-unit 

0 1 1 1.20 0.229 0.692 
1 1 1 1.20 0.230 0.692 
2 1 1 1.20 0.230 0.692 
0 0 1 1.28 0.534 0.731 
0 1 1 1.20 0.229 0.692 
0 2 1 1.20 0.116 0.698 
0 1 0 1.20 0.500 0.707 
0 1 1 1.20 0.229 0.692 
0 1 2 1.27 0.139 0.719 
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Fig. 8. The Ll-norm of the defect vector at the finest grid as a function of the number of work-units for Harten's 
dissipation model with the parameters /x 0 = 0, /.t t = 1, /x 2 = 1 and cr = 1.2. 
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reached in approximately 9.1 seconds on the same computer.  The numerical amplification 
rate lies below the analytical upper bounds. The number  of pre- and post-relaxations are 
equal in the numerical and anaytical case. 

The first difference between the analytical and numerical results is the number of 
relaxations taken at the coarsest grid. In the numerical calculation this number is equal to 
zero, whereas in the Fourier  analysis the optimal values are not equal to zero. Obviously, the 
second grid level containing 11 grid points is coarse enough for the Runge -Kut t a  procedure,  
so that all Fourier  modes are damped sufficiently. 

The second difference is the value of the CFL-number.  The CFL-number  compares with 
the CFL-number  found for the second-order backward difference stencil, but is significantly 
smaller than the CFL-number  found for the central difference stencil. In case a local 
minimum for the amplification rate for the central difference stencil is searched in the 
stability region [0.8, 1.3] of the second-order backward stencil, the Fourier  analysis yields the 
amplification factor A = 0.858 for the parameters 

~o = 1,  ~1 = 1,  ~2 = 1,  g = 1.20. (73) 

This CFL-number  equals the CFL-number  found in the numerical calculation. Besides, the 
numerical amplification rate lies well below the analytical upper bound. 

7. Conclusion 

Comparison of the numerical results of the discussed dissipation models shown in Figs 6 -8  
leads to the conclusion that the first-order Roe scheme performs best in combination with 
multigrid and Runge -Ku t t a  time stepping. The method possesses the lowest amplification 
rate per V-cycle in comparison with Harten 's  and Jameson's methods. However ,  the 
first-order accurate Roe scheme is not very suited for viscous flow problems. 

Among the second-order schemes, Harten 's  scheme shows the best amplification rate per 
V-cycle. This is desirable, because Harten 's  dissipation model,  which is really second-order 
accurate in space, is more expensive per V-cycle than Jameson's dissipation model,  which is 
only first-order accurate at shocks. The calculation times necessary to reach a solution with 
an error  of 10 -6  a r e  approximately the same for both schemes. It seems that the extension of 
Harten 's  dissipation model to multidimensional calculations will be more efficient and 
accurate than Jameson's  dissipation model,  if multigrid with Runge -Kut t a  timestepping and 
frozen dissipation is applied. 
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